Virtual Patients: Replacing humans with simulations could make clinical trials faster and safer
Revista : Scientific AmericanVolumen : 323
Número : 6
Páginas : 39
Tipo de publicación : ISI
Abstract
Every day, it seems, some new algorithm enables computers to diagnose a disease with unprecedented accuracy, renewing predictions that computers will soon replace doctors. What if computers could replace patients as well? If virtual humans could have replaced real people in some stages of a coronavirus vaccine trial, for instance, it could have sped development of a preventive tool and slowed down the pandemic. Similarly, potential vaccines that weren’t likely to work could have been identified early, slashing trial costs and avoiding testing poor vaccine candidates on living volunteers. These are some of the benefits of in silico medicine, or the testing of drugs and treatments on virtual organs or body systems to predict how a real person will respond to the therapies. For the foreseeable future, real patients will be needed in late-stage studies, but in silico trials will make it possible to conduct quick and inexpensive first assessments of safety and efficacy, drastically reducing the number of live human subjects required for experimentation.
With virtual organs, the modeling begins by feeding anatomical data drawn from noninvasive high-resolution imaging of an individual’s actual organ into a complex mathematical model of the mechanisms that govern that organ’s function. Algorithms running on powerful computers resolve the resulting equations and unknowns, generating a virtual organ that looks and behaves like the real thing.