Experimental and numerical analysis of low output power laser bending of thin steel sheets. http://dx.doi.org/10.1115/1.4005807
Revista : Journal of Manufacturing Science and Engineering-Transactions of the ASMEVolumen : 134
Número : 3
Páginas : 12 (pages)
Tipo de publicación : ISI Ir a publicación
Abstract
This work presents an experimental and numerical analysis of a low output power single-pass laser forming process applied to thin stainless steel sheets. To this end, the proposed methodology consists in four stages respectively devoted to material characterization via tensile testing, estimation of thermal boundary conditions present in laser forming, realization of laser bending tests for two sets of operating variables, and finally, numerical simulation of this process carried out with a coupled thermomechanical finite element formulation accounting for large plastic strains, temperature-dependent material properties and convectionradiation phenomena. The numerical analysis, focused on the description of the evolution of the thermomechanical material response, is found to provide a satisfactory experimental validation of the final bending angle for two laser forming cases with different operating variables. In both cases, the predicted high temperature gradients occurring across the sample thickness show that the deformation process is mainly governed by the thermal gradient mechanism.