Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Velasco C, , Cruz G., Jaubert O., Lavin B., Botnar R.M., Prieto C. (2021)

Simultaneous comprehensive liver T1, T2, T1p and fat fraction characterization with MR fingerprinting

Revista : Magnetic Resonance in Medicine
Tipo de publicación : ISI Ir a publicación

Abstract

Purpose
To develop a novel simultaneous co-registered T1, T2, urn:x-wiley:07403194:media:mrm29089:mrm29089-math-0811, T1?, and fat fraction abdominal MR fingerprinting (MRF) approach for fully comprehensive liver-tissue characterization in a single breath-hold scan.
Methods
A gradient-echo liver MRF sequence with low fixed flip angle, multi-echo radial readout, and varying magnetization preparation pulses for multiparametric encoding is performed at 1.5 T. The urn:x-wiley:07403194:media:mrm29089:mrm29089-math-0011 and fat fraction are estimated from a graph/cut water/fat separation method using a six-peak fat model. Water/fat singular images obtained are then matched to an MRF dictionary, estimating water-specific T1, T2, and T1?. The proposed approach was tested in phantoms and 10 healthy subjects and compared against conventional sequences.
Results
For the phantom studies, linear fits show excellent coefficients of determination (r2 > 0.9) for every parametric map. For in vivo studies, the average values measured within regions of interest drawn on liver, spleen, muscle, and fat are statistically different from the reference scans (p 0.92 for every parameter).
Conclusion
The proposed multi-echo inversion-recovery, T2, and T1? prepared liver MRF sequence presented in this work allows for quantitative T1, T2, urn:x-wiley:07403194:media:mrm29089:mrm29089-math-0013, T1?, and fat fraction liver-tissue characterization in a single breath-hold scan of 18 seconds. The approach showed good agreement and correlation with respect to reference clinical maps.