El Instituto de Ingeniería Matemática y Computacional UC les saluda cordialmente y los invita a participar del seminario de Métodos Numéricos para Ecuaciones Diferenciales Parciales que se desarrollará durante el segundo semestre 2018.
El primer seminario se llevará a cabo el día lunes 20 de agosto a las 17:00 horas, en el Auditorio San Agustín (Campus San Joaquín UC) y tendrá como expositor a Norbert Heuer, Profesor de la Facultad de Matemáticas UC. El título y resumen la charla se detallan a continuación:
The Kirchhoff-Love plate bending model and DPG approximation
For a given PDE problem, the choice of a variational formulation is critical for the design of stable Galerkin discretizations. Contrary to other schemes, the discontinuous Petrov-Galerkin method with optimal test functions (DPG method) inherits its stability from the well-posedness of the variational formulation. Therefore, the use of DPG approximations gives full flexibility in the choice of a variational formulation. This allows for creating specific formulations depending on the variables of interest and their norms.
After giving a brief introduction to the DPG method we will illustrate this paradigm in the case of the Kirchhoff-Love plate bending model. Some of its variables, for instance the bending moments, possess interesting regularity properties that are difficult to deal with both at the continuous and discrete levels.
This work is a joint collaboration with Thomas Führer (UC, Santiago) and Antti Niemi (U of Oulo, Finland).