Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Cheung M., Mestre J., Shmoys D.B. and Verschae J. (2017)

A Primal-Dual Approximation Algorithm for Min-Sum Single-Machine Scheduling Problems

Revista : SIAM Journal on Discrete Mathematics
Volumen : 31
Número : 2
Páginas : 825–838
Tipo de publicación : ISI Ir a publicación

Abstract

We consider the following single-machine scheduling problem, which is often denoted $1||sum f_{j}$: we are given $n$ jobs to be scheduled on a single machine, where each job $j$ has an integral processing time $p_j$, and there is a nondecreasing, nonnegative cost function $f_j(C_{j})$ that specifies the cost of finishing $j$ at time $C_{j}$; the objective is to minimize $sum_{j=1}^n f_j(C_j)$. Bansal and Pruhs recently gave the first constant approximation algorithm with a performance guarantee of 16. We improve on this result by giving a primal-dual pseudo-polynomial-time algorithm based on the recently introduced knapsack-cover inequalities. The algorithm finds a schedule of cost at most four times the constructed dual solution. Although we show that this bound is tight for our algorithm, we leave open the question of whether the integrality gap of the linear program is less than 4. Finally, we show how the technique can be adapted to yield, for any $epsilon >0$, a polynomial time $(4+epsilon )$-approximation algorithm for this problem.