Pontificia Universidad Católica de Chile Pontificia Universidad Católica de Chile
Reutter Juan (2024)

Communication Cost of Joins over Federated Data

Revista : International Conference on Database Theory
Tipo de publicación : ISI Ir a publicación

Abstract

We study the problem of querying different data sources, which we assume out of our control and that are made available by standard web communication protocols. In this scenario, the time spent communicating data often dominates the time spent processing local queries in each server. Thus, our focus is on algorithms that minimize the communication between the query processing server and the federated servers containing data.
However, any federated query can always be answered with linear communication, simply by requesting all the data to the federated sources. Further, one can show that certain queries do require this amount of communication. But sending all the data is definitely not a relevant algorithm from a practical point of view. This worst-case analysis is, therefore, not useful for our needs. There is a growing body of work in terms of designing strategies that minimize communication in query federation, but these strategies are commonly based in heuristics, and we currently miss a formal analysis providing guidelines for the design of such strategies.
We focus on the communication complexity of federated joins when the problem is parameterized by a measure commonly referred to as the certificate of the instance: a framework that has been used before in the context of set intersection and local query processing. We show how to process any conjunctive query in time given by the certificate of instances. Our algorithm is an adaptation of Minesweeper, one of the algorithms devised for local query processing, into our federating setting. When certificates are of the size of the instance, this amount to sending the entire database, but our strategy provides drastic reductions in the communication needed for queries and instances with small certificates. We also show matching communication lower bounds for cases where the certificate is smaller than the size of active domain of the instances.